Hybridized Discretisation Methods for Computational Fluid Dynamics

Antonio Huerta

Laboratori de Càlcul Numèric (LaCàN), E.T.S. de Ingeniería de Caminos, Canales y Puertos, Universitat Politècnica de Catalunya, Barcelona, Spain Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Barcelona, Spain

ABSTRACT

Hybrid discretization methods have recently gained attention for their ability to provide robust and accurate numerical solutions for partial differential equations. These methods are effective in both low- and high-order settings, making them well-suited for complex engineering problems. This talk will present recent advancement in two such approaches: the **face-centered finite volume (FCFV)** method [6] and the **hybridizable discontinuous Galerkin (HDG)** method [1,4], focusing on their application to compressible and incompressible flow simulations.

For large-scale flow simulations, industry demands fast and robust techniques capable of delivering results overnight. **FCFV** offers a competitive solution by handling general unstructured meshes while achieving first-order convergence of the stress tensor without requiring flux reconstruction. This talk will highlight common mesh-induced errors in traditional cell-centered finite volume (CCFV) methods. Unlike CCFV, FCFV is **less sensitive to mesh quality**, even in the presence of **highly distorted or stretched cells** [6,10]. Additionally, in **compressible flow** problems, FCFV provides **non-oscillatory** approximations of sharp discontinuities without the need for shock-capturing or limiting techniques [8]. For **transient or steady laminar and turbulent viscous incompressible** flows, novel convective stabilizations inspired by Riemann solvers enhance FCFV's **robustness and accuracy**, even under severe cell distortions in **high Reynolds number** boundary layers [10]. Moreover, FCFV remains stable in the incompressible limit, eliminating the need for special velocity-pressure coupling treatments [2,8,9,10].

For high-fidelity simulations, high-order methods are preferred due to their low diffusion and dispersion errors, though they often lack robustness. To address this, the development of positivity-preserving and shear-preserving approximate Riemann solvers for HDG discretizations will be discussed. The use of HLL and HLLEM solvers significantly improves shock wave resolution compared to traditional Lax-Friedrichs and Roe fluxes, particularly in supersonic flows, where physically admissible solutions are achieved without user-defined corrections [7]. Additionally, the high-order HDG framework demonstrates robustness in the incompressible limit and performs well for weakly compressible flows in fluid-structure interaction problems. Lastly, the benefits of HDG-NEFEM with degree adaptivity will be extended to simulations involving NURBS-defined immersed boundaries and interfaces [11].

REFERENCES

[1] B. Cockburn, J. Gopalakrishnan and R. Lazarov. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal., 47(2):1319–1365, 2009.

[2] R. Sevilla and A. Huerta. HDG-NEFEM with degree adaptivity for Stokes flows. J. Scientific Comput., 77(3):1953–1980, 2018.

[2] M. Giacomini and R. Sevilla. A second-order face-centred finite volume method on general meshes with automatic mesh adaptation. Int. J. Numer. Methods Eng., 121(23):5227–5255, 2020.

[3] M. Giacomini, R. Sevilla and A. Huerta. Tutorial on Hybridizable Discontinuous Galerkin (HDG) Formulation for Incompressible Flow Problems. In: Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids, L. De Lorenzis and A. Düster (eds.), CISM International Centre for Mechanical Sciences, 599:163–201, Springer, 2020.

[4] M. Giacomini, R. Sevilla and A. Huerta. HDGlab: An open-source implementation of the hybridisable discontinuous Galerkin method in MATLAB. Arch. Comput. Methods Eng., 28(3):1941–1986, 2021.

[5] A. La Spina, M. Kronbichler, M. Giacomini, W.A. Wall and A. Huerta. A weakly compressible hybridizable discontinuous Galerkin formulation for fluid-structure interaction problems. Comput. Methods Appl. Mech. Eng., 372:113392, 2020.

[6] R. Sevilla, M. Giacomini and A. Huerta A face-centred finite volume method for second-order elliptic problems. Int. J. Numer. Methods Eng., 115(8):986–1014, 2018.

[7] J. Vila-Pérez, M. Giacomini, R. Sevilla and A. Huerta. Hybridisable discontinuous Galerkin formulation of compressible flows. Arch. Comput. Methods Eng., 28(2):753–784, 2021.

[8] J. Vila-Pérez, M. Giacomini, R. Sevilla and A. Huerta. A non-oscillatory facecentred finite volume method for compressible flows. Comput. Fluids, 235:105272, 2022.

[9] J. Vila-Pérez, M. Giacomini and A. Huerta. Benchmarking the face-centred finite volume method for compressible laminar flows. Int. J. Numer. Methods Heat Fluid Flow, 33(6):2198–2231, 2023.

[10] L.M. Vieira, M. Giacomini, R. Sevilla and A. Huerta. A face-centred finite volume method for laminar and turbulent incompressible flows. Comput. Fluids, 279:106339, 2024.

[11] S. Piccardo, M. Giacomini and A. Huerta. An unfitted high-order HDG method for two-fluid Stokes flow with exact NURBS geometries. J. Comput. Phys., 512:113143, 2024.